Тема № Анализ проектных рисков И. Волков, М. Грачева

ч. 1

Тема № 7. Анализ проектных рисков

И. Волков, М. Грачева http://www.cfin.ru/finanalysis/project_risk.shtml

Оглавление:

Анализ проектных рисков: процедурные вопросы
Качественный анализ проектных рисков
Количественный анализ

Материал посвящен изучению методологии анализа проектных рисков. Необходимость такого анализа обоснована прежде всего тем, что построенные по любому инвестиционному проекту потоки денежных средств относятся к будущим периодам и носят прогнозный характер. Поэтому возрастает вероятность недостоверности используемых для расчетов числовых данных, а значит и самих результатов. Следовательно, наиболее важной частью экспертизы становится учет и оценка возможных негативных последствий таких ошибок. Основным инструментом подобных исследований служит анализ рисков проекта, являющийся важнейшей составной частью экспертизы инвестиционного проекта и играющий значительную роль в принятии решения об инвестировании. Кроме того, анализ рисков должен играть роль своеобразного “переходного моста” от экспертизы проекта к управлению его реализацией. В данном разделе представлены практически используемые подходы к анализу проектных рисков, исследованы качественный и количественный аспекты анализа, вероятностный способ оценки рисков.



Анализ проектных рисков: процедурные вопросы

Теория риска начала интенсивно развиваться примерно с 50-х годов нашего столетия за рубежом. Наибольшее число исследований, посвященных анализу риска, принадлежит американским ученым, хотя эта проблема активно изучалась и в западноевропейских странах. В то же время в нашей стране происходило серьезное развитие математического аппарата анализа рисков применимо к теории планирования эксперимента в технических и естественных областях знаний.

В современной отечественной практике инвестиционного проектирования понятие “анализ проектных рисков” появилось недавно. Оно объединило накопленный ранее международный опыт и основательную российскую теоретическую базу, став обязательным разделом любого бизнес-плана инвестиционного проекта, “законодательно” закрепленным в “Методических рекомендациях по оценке эффективности инвестиционных проектов и их отбору для финансирования”.

Необходимо различать понятия “риск” и “неопределенность”.



Неопределенность предполагает наличие факторов, при которых результаты действий не являются детерминированными, а степень возможного влияния этих факторов на результаты неизвестна; это неполнота или неточность информации об условиях реализации проекта. Факторы неопределенности подразделяются на внешние и внутренние. Внешние факторы — законодательство, реакция рынка на выпускаемую продукцию, действия конкурентов; внутренние — компетентность персонала фирмы, ошибочность определения характеристик проекта и т.д.

Риск — потенциальная, численно измеримая возможность потери. Риск проекта — это степень опасности для успешного осуществления проекта. Понятием риска характеризуется неопределенность, связанная с возможностью возникновения в ходе реализации проекта неблагоприятных ситуаций и последствий, при этом выделяются случаи объективных и субъективных вероятностей.

Инвестиция в любой проект сопряжена с определенным риском, что, как уже указывалось, отражается в величине процентной ставки: проект может завершиться неудачей, т.е. оказаться нереализованным, неэффективным или менее эффективным, чем ожидалось. Риск связан с тем, что доход от проекта является случайной, а не детерминированной величиной (т.е. неизвестной в момент принятия решения об инвестировании), равно как и величина убытков. При анализе инвестиционного проекта следует учесть факторы риска, выявить как можно больше видов рисков и постараться минимизировать общий риск проекта.

По своему отношению к риску инвесторы могут быть разделены группы:


  • склонные к риску (готовые платить за то, чтобы нести риск);

  • не склонные к риску (готовые платить, чтобы уклониться от риска);

  • нейтральные к риску (безразличные к наличию или отсутствию риска).

Непосредственно отношение к риску зависит как от целей инвестирования (степени рискованности проекта), так и от финансового положения инициатора (инвестора). Для принятия правильного инвестиционного решения необходимо не только определить величину ожидаемого дохода, степень риска, но и оценить, насколько ожидаемый доход компенсирует предполагаемый риск. Однако сложность заключается в том, что оценка риска осуществления инвестиций в меньшей степени, чем другие способы оценки, поддается формализации. Тем не менее, анализ риска является необходимым и чрезвычайно важным этапом инвестиционной экспертизы.

К сожалению, в настоящее время ряд бизнес-планов инвестиционных проектов, содержащих раздел анализа рисков, сужает проблему до анализа только финансовых рисков или подменяет анализом банковских рисков, что не отражает весь спектр проектных рисков.

Данный раздел отражает анализ существующей теории (risk analysis) и практический известный авторам опыт оценки рисков проекта, что дает право на описание в этом разделе специального инструментария под общим названием анализ проектных рисков.

Анализ проектных рисков подразделяется на качественный (описание всех предполагаемых рисков проекта, а также стоимостная оценка их последствий и мер по снижению) и количественный (непосредственные расчеты изменений эффективности проекта в связи с рисками).

В число проектных рисков обычно включаются такие как: технические, риски участников проекта, политические, юридические, финансовые, маркетинговые, экологические, военные, строительно-эксплуатационные, специфические, риски обстоятельств непреодолимой силы и др.

Наиболее часто встречающимися количественными методами анализа рисков являются анализ чувствительности (уязвимости), анализ сценариев и имитационное моделирование рисков по методу Монте-Карло.

Предрисковая оценка чистых выгод инвестиционного проекта, анализ его эффективности базируется на утверждении о наиболее успешном осуществлении и эксплуатации проекта просто уже потому, что априори отсекает неопределенность исходных факторов (переменных). Дело в том, что основываясь на ретроспективном анализе, исследователь прогнозирует определенную величину (оценку) исследуемого фактора (переменной). Однако при этом результативный проектный показатель, зависящий от данного фактора, также принимает определенное точечное значение, которое может ввести в заблуждение, так как при некотором внепрогнозном изменении переменной изменится и результативность проекта.

Даже если эксперт-аналитик использует наиболее вероятные значения каждой проектной переменной, это вовсе не приведет к тому, что полученный результат будет также наиболее вероятным результатом.

ПРИМЕР

Рассмотрим две переменных (фактора), в качестве которых выберем цену (Р) и объем (Q) проданной продукции.


Фактор

Вероятность, %

Значение, долл.

Цена

(P1)=60
(P2)=40

10.00
20.00

Объем

(Q1)=60
(Q2)=40

100 ед.
200 ед.

Посчитаем выручку как произведение цены на объем для различных комбинаций переменных:

Выручка
(Цена • Объем)


Вероятность, %

Значение, долл.

P1•Q1

36

1000

P1•Q2

24

2000

P2•Q1

24

2000

P2•Q2

16

4000

Выручка, равная $2000 с вероятностью 48%, полученная в комбинациях (P1•Q2) и (P2•Q1), является в этом примере наиболее вероятной, а не выручка в $1000 с вероятностью 36%, получаемая при наиболее вероятных оценках цены и объема (т.е. P1•Q1).

Таким образом, представленный пример показывает, что если исследователь абстрагируется от неопределенности и выберет наиболее вероятные значения переменных (факторов), то на выходе значение результативного показателя, являющегося функцией этих факторов, совсем не обязательно будет наиболее вероятным, и это может привести к ошибочным выводам и решениям.

При проведении анализа проектного риска сначала определяются вероятные пределы изменения всех его “рискованных” факторов (или критических переменных), а затем проводятся последовательные проверочные расчеты при допущении, что переменные случайно изменяются в области своих допустимых значений. На основании расчетов результатов проекта при большом количестве различных обстоятельств анализ риска позволяет оценить распределение вероятности различных вариантов проекта и его ожидаемую ценность (стоимость).

Анализ рисков, как уже говорилось, важнейший этап анализа инвестиционного проекта. Согласно финансовой теории, каждая фирма в процессе инвестиционной деятельности стремится максимизировать свою стоимость. В условиях полной определенности и отсутствия риска эта задача эквивалентна задаче максимизации прибыли, т.е. показателя NPV. Но как только предпосылки снимаются, задачи перестают быть эквивалентными. В реальности же для большинства инвесторов и разработчиков важна не только максимизация прибыли, но и минимизация риска рассматриваемого инвестиционного проекта.

Подчеркнем еще одно важное обстоятельство: анализ рисков проекта базируется на осуществленном расчете всех его показателей и критериев, так называемом базисном варианте (на основе фактической и прогнозной информации), доказавшем эффективность проекта.

Использование методов математического программирования для принятия оптимальных инвестиционных решений.



ПРИМЕР

Некий бизнесмен решил создать компанию, сдающую в аренду клиентам офисное оборудование (например, факсы и ксероксы), которое он предполагает закупить. Предположим (для простоты), что каждый договор с клиентом об аренде имеет длительность два года и заключается в момент закупки оборудования компанией, т.е. в начале первого года. Проведенный компанией анализ рынка позволяет утверждать, что существует неограниченный спрос на предлагаемое в аренду оборудование по стандартной арендной плате, общая сумма которой будет выплачена в конце второго года. Чистый дисконтированный доход, полученный бизнесменом от сдачи в аренду каждого факса и каждого ксерокса, составит 400 и 500 ден. ед. соответственно. Стоимость факса 300 ден. ед., из которых часть (100 ден. ед.) выплачивается в конце первого года, а остальная сумма (200 ден. ед.) — в конце второго, ксерокс стоит 400 ден. ед., и схема выплат аналогична: 300 ден. ед. выплачиваются в конце первого года, а остальная сумма (100 ден. ед.) — в конце второго. Бизнесмен предполагает, что доступные ему ежегодные фонды ограничены и составляют 40 000 ден. ед. (в первый год) и 30 000 ден. ед. (во второй год).

Какое количество факсов и ксероксов следует приобрести бизнесмену, чтобы максимизировать суммарный чистый дисконтированный доход проекта?

ОТВЕТ

Решение данной задачи можно получить с помощью методов линейного программирования.

Для построения модели задачи обозначим число единиц оборудования, которое нужно приобрести:

f — число факсов;


х — число ксероксов.

Введем ограничения:


100f + 300x <= 40 000 (1.1);
200f + 100x <= 30 000 (1.2).

Экономический смысл построенных ограничений (1.1), (1.2) состоит в том, что ежегодные суммарные выплаты за приобретенные бизнесменом факсы и ксероксы не могут превышать размеров доступных ему ежегодных фондов. Кроме того, для реальных экономических величин должны выполняться ограничения:


f >= 0 (1.3);
х >= 0 (1.4).

Требуется максимизировать функцию

z = 400f + 500х (1.5)

при ограничениях (1.1)—(1.4).

Известно, что в случае двух переменных решение задачи математического программирования можно провести не только аналитически (например, используя симплекс-метод), но и графически. В нашем примере интерес представляет только целочисленное решение.

Рассмотрим графический вариант решения модели сконструированной по выражениям (1.1)—(1.5).



Рис. 1.1. Графический вариант решения модели (1.1)—(1.5):


1 — в соответствии с выражением (1.1);
2 — в соответствии с выражением (1.2).

Заменив неравенство (1.1) равенством, построим в декартовой системе координат соответствующую прямую 1 (рис. 1.1).

Она разделит плоскость на две полуплоскости, расположенные над и под прямой. Неравенству (1.1) будут удовлетворять все точки, принадлежащие нижней полуплоскости и самой прямой 1.

Аналогичным образом отразим на графике решения неравенств (1.2) — (1.4).

Допустимое множество решений задачи линейного программирования находится в заштрихованной области и на ее границах.

Функционал (1.5) задачи строится аналогичным образом.

Из всего допустимого множества (согласно теории математического программирования) представляют интерес только точки, расположенные в вершинах заштрихованной области:

А (0; 150); В (100; 100); С (400/3; 0); О (0; 0).

Максимального значения, равного 90 000 ден. ед., функционал (1.5) достигает в вершине В, т.е. максимальный чистый дисконтированный доход, равный 90 000 ден. ед., бизнесмен может получить, если приобретет 100 факсов и 100 ксероксов.

Итак, в качестве функционала нашей модели был рассмотрен некий простейший аналог критерию NPV , а в качестве значений правых частей ограничений модели использовались, вообще говоря, лимиты ресурсов проекта в денежном выражении. Неизвестными в данной задаче являлись стоимостные значения объемов проектных услуг.

На основании теории двойственности в математическом программировании можно построить задачу, двойственную к данной, а полученные при ее решении так называемые двойственные переменные (объективно обусловленные оценки, теневые цены, скрытые цены) позволяют определить альтернативную стоимость используемых в проекте дефицитных ресурсов.

Построим двойственную к нашей задаче.

Пусть p1 — двойственная оценка фондов в первый год;
p2 — двойственная оценка фондов во второй год.

В этих обозначениях, необходимо минимизировать общие альтернативные стоимости совокупного объема фондов в целом за период проекта, то есть минимизировать функцию Z= (40000р1 + 30000р2) при ограничениях:

100р1 + 200р2 >= 400
300р1 + 100р2 >= 500,

экономический смысл которых в том, что продажа всех ресурсов (фондов), затрачиваемых на единицу каждого вида оборудования (факса или ксерокса) по их альтернативной стоимости в сумме не может быть меньше величины чистого дисконтированного дохода от одного факса или ксерокса соответственно. Кроме того, альтернативные стоимости, как реальные экономические величины, не могут иметь отрицательных значений, поэтому

р1 >= 0;
р2 >= 0.

Уже этот простой пример наглядно демонстрирует возможности и преимущества использования методов математического программирования для принятия проектных решений.



Продолжение...

Материал из книги "Проектный анализ"

Дата публикации: 22.03.1999

http://sumdu.telesweet.net/doc/lections/Proektnyiy-analiz/22869/index.html

Практические методы учета рисков


В настоящее время на практике используется широкий спектр приемов и подходов, позволяющих анализировать про­ектные риски (кратко опишем основные).

Метод экспертных оценок состоит в возможности использования опыта экспертов в процессе анализа проекта и учета влияния разнообразных качественных факторов, это его основ­ное преимущество. Формальная процедура экс­пертной оценки чаще всего сводится к следующему. Руководство проекта (фирмы) разрабатывает перечень критери­ев оценки в виде экспертных (опросных) листов, содержащих вопросы. Для каждого критерия назначают (реже – исчисляют) соответствующие весовые коэффициенты, значения которых не сообщают экспертам. Затем по каждому критерию составляют варианты ответов, веса которых также неизвестны экспертам. Эксперты должны обладать полной информацией об оценивае­мом проекте и, проводя экспертизу, анализировать поставленные вопросы и отмечать выбранный вариант ответа. Далее заполненные экспертные листы обрабатывают соответствующим образом – на основании известных статистических (компью­терных) пакетов обработки информации – и выдают количест­венный результат или результаты проведенной экспертизы.

Субъективная вероятность является предпо­ложением относительно некоторого результата, которое основывается на суждении оценивающего, на его личном опыте. Можно условно считать данный подход частным случаем мето­да экспертных оценок. Преимуществом метода субъективных вероятностей является возможность их применения для неповторяющихся событий и в условиях отсутствия достаточного количества статистических данных в отличие от объективных вероятностей, что и определяет их сферу применения в анализе.

Прием, основанный на определении периода (срока) окупаемо­сти инвестиций или срока возврата (возмещения) первоначаль­ных инвестиционных расходов, трактует этот период как необходимый для возврата первоначального капитала за счет накопленных чистых потоков реальных денег, генерированных проектом. Недостатком данного подхода является выделение из всего потока затрат только объема первона­чальных инвестиций, т.е. начальной фазы периода реализа­ции проекта. Классическое определение срока окупаемости проекта, ориентирующееся на всю совокупность затрат, свя­занных с конкретным проектом, свободно от указанного недостатка. Однако, во-первых, в данном случае речь идет толь­ко о сроке окупаемости инвестиций, и, во-вторых, инвестиционное решение принимается не только на основании этого критерия, а в совокупности с другими – чистым дисконтированным доходом (NPV), внутренней нормой доходности (IRR), индексом прибыльности (PI). Поэтому эксперты-аналитики инвестиционного проекта, понимая ограниченность этого под­хода, тем не менее используют его на практике. Лицам, принимающим решение о вложении денежных средств в инвестиционный проект, необходима ориентировочная информация о сроке окупаемости инвестиций, что поможет оценить риск проекта.

Метод аналогий состоит в анализе всех имеющихся дан­ных, касающихся осуществления фирмой или банком аналогичных в прошлом с целью расчета вероятностей возникновения потерь. Колоссальную роль при этом играет банк накопленных данных о всех предпринятых ранее проектах, создаваемый на основе их оценки уже после заверше­ния. Наибольшее, применение метод аналогий находит при оценке риска часто повторяющихся проектом, например, в строительстве. Если строительная фирма предполагает реализовать проект, аналогичный уже завершенным проектам, то для расчета уровня риска предпринимаемого проекта можно построить так называемую кривую риска на основании имеющегося статистического материала. С этой целью устанавливаются области риска, ограниченные нижней и верхней границами общих потерь.



Метод ставки процента с поправкой на риск позволяет, увеличивая безрисковую ставку процента на величину надбавки за риск, учесть факторы риска при расчете эффективности проекта.

Возможные применяемые на практике рисковые надбавки, зависящие от сущности проекта и видов инвестиций (премия за риск):



Виды инвестиций

Премия за риск, %

Замещающие инвестиции

0 – 6

Новые инвестиции

5 – 15

Инвестиции в НИР

10– 20

Использование показателей дисперсии и среднего квадратичеcкого (стандартного) отклонения позволяет количественно оце­нить риск нескольких проектов (или нескольких вариантов одного проекта). В тех случаях, когда проекты имеют несколько возможных исходов, дисперсия характеризует степень рассеивания случайной величины (например, чистого дисконтированного дохода) вокруг своего среднего значения (математического ожидания).

Метод критических значений базируется на нахождении тех значении переменных (факторов) или параметров проекта, проверяемых на риск, которые приводят расчетное значение соответствующего критерия эффективности проекта к критиче­скому пределу.

Кроме перечисленных подходов практически используются следующие:


  • построение сложных распределении вероятностей (деревья решений);

  • анализ чувствительности (включая методы математического программирования, анализ точки безубыточности и др.);

  • анализ сценариев.

Качественный и количественный анализ проектных рисков


В инвестиционных проектах, связанных с вложением средств в реальные активы, рекомендуется проанализировать существование таких рисков, как:

  • техникотехнологические;

  • маркетинговые;

  • финансовые;

  • вoеннoпoлитичеcкиe;

  • юридические;

  • экологические;

  • строительные;

  • риски обстоятельств непреодолимой силы (форсмажор);

  • социальные;

  • специфические.

Технико-технологические риски могут быть вызваны следующими причинами:

  • ошибки в проектировании;

  • недостатки технологии и неправильный выбор оборудо­вания;

  • ошибочное определение мощности;

  • недостатки управления;

  • нехватка квалифицированной рабочей силы;

  • отсутствие опыта работы с импортным оборудованием у местного персонала;

  • срыв поставок сырья, стройматериалов, комплектующих;

  • срыв сроков строительных работ подрядчиками (субпод­рядчиками);

  • повышение цен на сырье, энергию и комплектующие;

  • увеличение стоимости оборудования;

  • рост расходов на зарплату.

Возможное проявление всех указанных причин технико-технологического риска (как и для других перечисленных видов рисков) неизбежно приводит к повышению расчетной стоимо­сти проекта.

Маркетинговые риски возникают по следующим причинам:

  • неправильный выбор рынков сбыта продукции, неверное определение стратегии операций на рынке, неточный расчет емкости рынка, неправильное определение мощ­ности производства;

  • непродуманность, неотлаженность или отсутствие сбыто­вой сети на предполагаемых рынках сбыта;

  • задержка в выходе на рынок.

Маркетинговые риски могут привести к отсутствию необхо­димых доходов, достаточных для погашения кредитов, невозможности реализовать (сбыть) продукцию в нужном стоимостном выражении и в намеченные сроки.

Возникновению финансовых рисков способствуют:



  • экономическая нестабильность в стране;

  • инфляция;

  • сложившаяся ситуация неплатежей в отрасли;

  • дефицит бюджетных средств.

Причины возникновения финансового риска проекта, которые мoгут привести к росту процентной ставки, удорожанию финансирования, а также росту цен и услуг по контрактам на строительство.

Основные причины возникновения военно-политических рисков, которые могут привести к убыткам инве­стора и даже к потере проекта:



  • изменение торговополитического режима и таможенной политики;

  • изменения в налоговой системе, в валютном регулировании, регулировании внешнеполитической деятельности страны;

  • изменения в системах экспортного финансирования;

  • нестабильность страны;

  • опасность национализации и экспроприации;

  • изменения законодательства (например, закона о ино­странных инвестициях);

  • сложность с репатриацией прибыли;

  • геополитические риски;

  • социальные риски.

Последствия неблагоприятных исходов юридических рисков:

  • неотлаженное законодательство;

  • нечетко оформленные документы, подтверждающие пра­во собственности, аренды и т.д.

Причины возникновения экологических рисков:

  • неустойчивое законодательство в части требований к окружающей среде;

  • аварии;

  • изменение отношения к проекту властей.

Строительные риски можно разделить по периодам на две категории:

  • категория А – до завершения строительства;

  • категория Б – после завершения строительства.

Риски категории А – приносят материальный ущерб строи­тельству, увеличивают его стоимость. Их причины:

  • задержки в строительстве;

  • невыполнение обязательств поставщиком, дефекты в обо­рудовании, технологии;

  • срывы сроков строительства (монтажа) по вине подрядчика.

Риски категории Б:

  • качества продукции;

  • менеджмента;

  • реализации продукции;

  • экспортноимпортные;

  • транспортные;

  • снабжения;

  • несовместимость оборудования;

  • типа «форсмажор»;

  • физический ущерб.

Специфические риски – редко встречающиеся проектные риски, свойственные только определенному проекту (например, ядерные риски – в проектах строительства или реконструкции атомных электрocтaнций).

Если в данном проекте существует опасность воздействия на ход его реализации природных катаклизмов (землетрясения, наводнения, засухи и т.п.), то возникает необходимость рассмотрения рисков форс-мажорных обстоятельств, при этом, конечно, не только описываются их возможные последствия, но и предлагаются минимизирующие ущерб мероприятия.

Все мероприятия, позволяющие минимизировать проект­ный риск, можно условно разделить на группы:


  • первая – диверсификация рисков, позволяющая, например, распределить риск между участниками проекта;

  • вторая – страхование проектных рисков, которое в услови­ях переходного периода отечественной экономики к рыночным отношенным делает только первые шаги;

  • третья – увеличение доли отчислений на непредвиденные обстоятельства.

Количественный анализ. Наиболее часто встречающимися методами количественного анализа рисков проекта, как уже отмечалось, являются анализ чувствительности (уязвимости), анализ сценариев и имитаци­онное моделирование рисков по методу Монте-Карло.

Прежде чем исследовать каждый из перечисленных мето­дов, дадим общее представление о них. Итак, проведение ко­личественного анализа проектных рисков опирается на уже упомянутый базисный вариант расчета проекта. В ходе качест­венного анализа были определены проверяемые на риск факто­ры (переменные) проекта. Задача количественного анализа со­стоит в численном измерении влияния изменений рискованных факторов на эффективность проекта.



Анализ чувствительности (уязвимости) происходит при "после­довательно-единичном" изменении каждой переменной: только одна из переменных меняет значение, на основе чего пересчи­тывается новое значение используемого критерия (например, критерия чистого дисконтированного дохода NPV). Затем оце­нивается процентное изменение критерия по сравнению с базисным случаем и рассчитывается показатель чувствительности, представляющий собой отношение процентного изменения критерия к изменению значения переменной на один процент (так называемая эластичность изменения показателя). Таким же образом исчисляются показатели чувствительности по каж­дой из остальных переменных.

Таблица 8.1 – Критические факторы, последствия их воздействия и необходимые мероприятия



Факторы

Последствия

Мероприятия

1. Увеличение физического объема продаж

Снижение цены; усиленная реклама; развитие дистрибьюторской сети; стимулирование спроса; повышение качества продукции.

Снижение относительного объема продаж в денежном выражении; дополнительные затраты на рекламу; затраты на открытие новых сбытовых агентств; потери на скидках и прочих льгот для потребителей; дополнительные затраты на НИОКР и производство.

2. Повышение цены на продукцию

Сокращение физического объема продаж; усиление маркетинга.

Снижение поступлений от продажи единицы продукции; дополнительные затраты на маркетинг.

3. Сокращение прямых производственных издержек

Закупка более дешевых материалов; снижение материалоемкости конструкции, поиск новых альтернативных материалов; создание больших производственных запасов материалов и комплектующих «по старым» ценам

Сокращение объема сбыта продукции вследствие снижения качества; дополнительные НИОКР; рост общих (постоянных) издержек вследствие выплат процентов по кредитам, использованным на приобретение материалов и комплектующих в запас.

4. Сокращение общих (постоянных) издержек

Сокращение затрат на маркетинг; сокращение затрат на заработную плату; сокращение затрат на потребление энергоресурсов; сокращение затрат на транспортные услуги; сокращение затрат на аренду помещений

Снижение объемов сбыта; снижение квалификации персонала и, как следствие, ухудшение качества продукции; затраты на приобретение нового, менее энергоемкого оборудования; приобретение собственного транспорта; строительство собственного здания.

5. Увеличение инвестиций

Приобретение нового технологического оборудования; приобретение лицензии на производство нового продукта; приобретение нового здания цеха

Сокращение текущих производственных затрат в связи с более высокой производительностью и уровнем амортизации технологического оборудования; увеличение объема сбыта продукции вследствие более высокого качества; сокращение текущих постоянных затрат вследствие исключения арендных платежей.

6. Продолжительность производственно-технологического цикла

Приобретение более производительного технологического оборудования; увеличение загрузки оборудования посредством изменения режима работы (увеличе6ние сменности); разработка новой, более технологичной концепции проекта

Увеличение инвестиционных затрат; увеличение затрат на заработную плату и обслуживание оборудования; затраты на проведение НИОКР и подготовку производства.

Выводы к теме 8 «Анализ проектных рисков»


Осуществление инвестиционного проекта связано определенными рисками. При этом под риском понимается потенциальная, численно измеримая возможность потери. Риск проекта – это степень опасности для успешного осуществления проекта.

По отношению к риску инвесторов можно разделить на группы:



  • склонные к риску (готовые платить за то, чтоб бы нести риск);

  • не склонные к риску (готовые платить, чтобы уклониться от риска);

  • нейтральные к риску (безразличные к наличию или отсутствию риска).

В настоящее время на практике используется широкий спектр приемов и подходов, позволяющих анализировать про­ектные риски: метод экспертных оценок; метод «субъективная вероятность»; прием, основанный на определении периода (срока) окупаемо­сти инвестиций; метод аналогий; метод ставки процента с поправкой на риск; использование показателей дисперсии и среднего квадратичеcкого (стандартного) отклонения; метод критических значений и др.

В инвестиционных проектах, связанных с вложением средств в реальные активы, рекомендуется проанализировать существование таких рисков, как:



  • техникотехнологические;

  • маркетинговые;

  • финансовые;

  • вoеннoпoлитичеcкиe;

  • юридические;

  • экологические;

  • строительные;

  • риски обстоятельств непреодолимой силы (форсмажор);

  • социальные;

  • специфические.

Принципы анализа рисков в проектах

Михайло Колиснык
Киево-Могилянская Бизнес-Школа
Журнал «&Стратегии» февраль 2005



Миры Роджера Желязны — вопреки реке времени

«Еще полдюжины шагов — и исчез даже намек на стены. И крыша, кстати, тоже. Оглядываясь, я не видел никаких признаков ни коридора, ни входа в него. Там было лишь пустое, мрачное пространство. К счастью, пол — или земля — под ногами оставался твердым. Единственно, как можно было выделить свою дорогу из окружающего мрака, — это видеть ее. Я шагал по жемчужно-серой тропе через Долину Отражений, хотя технически, полагаю, я шел между ними. Ну-ну. Кто-то или что-то, чтобы обозначить мне путь, неохотно проливал на тропу как можно меньше света.

Шагая в мрачной тишине, я недоумевал, среди скольких Отражений уже прошел, а потом — не слишком ли прямолинейно рассматриваю подобный феномен. Вероятно.»

Роджер Желязны, «Рыцарь Отражений»

Многие современные писатели-фантасты создали собственные фантастические и захватывающие миры, в которые надолго погружаются целые поколения читателей, увлеченные интересом к неведомому либо отвращением к существующему. Некоторые миры настолько популярны, что, заимея последователей, стали жить собственной жизнью, так как находятся люди, которые лучшим проведением свободного времени считают игру в импровизированный театр по мотивам произведений Дж. К. Ролинг, Г. Гаррисона либо Дж. Толкиена.

Не меньшей популярностью пользуются произведения и миры Роджера Желязны. В отличие от героев других фантастов, которые свободно перемещаются вниз и вверх по течению реки времени, герои Р. Желязны смело пересекают реку поперек.

Вспомните, как часто нам с вами приходилось задумываться о своем прошлом, строя предположительные умозаключения, как бы развивалась наша дальнейшая судьба, если бы мы поступили не так, как тогда, а совсем иначе.

Признаюсь честно, автор этих строк не раз задумывался, как развивались бы дальнейшие события, если бы ему пришлось учиться не на экономическом факультете вуза, а, скажем, на факультете математики, как он когда-то намеревался. Впрочем, в жизни каждого человека часто бывают моменты, когда от принятого решения кардинально зависит дальнейшее развитие событий. Иногда даже сама природа (читай окружающая среда) решает это за нас, предопределяя ход их развития.

Мы решаем, куда пойти учиться, выбираем, куда пойти работать, выбираем, как, когда и какие экзамены сдавать в своей жизни. Природа частично за нас выбирает, сдадим ли мы экзамены, пройдем ли успешно интервью при найме на работу, удастся ли успешно развить новый, только что основанный нами бизнес и даже просто удастся ли успешно разъехаться в следующую минуту, со столь неожиданно выскочившим на встречную полосу автомобилем.

Подобно нам, в больших и маленьких компаниях ежедневно принимаются десятки и сотни тысяч решений, так или иначе предопределяющих ход развития событий. Мы решаем, будучи менеджерами на службе корпораций, каким образом развивать продвижение на рынок тех или иных продуктов, принимаем решения о замене оборудования, о входе на новые и выходе со старых сегментов бизнеса, принимаем новые проекты. Менеджеры высшего звена принимают кардинальные решения, от которых часто зависит развитие стратегии компании. Природа, в частности рынок и бизнес-среда, определяет успешность принятых корпоративных решений, демонстрируя успешность развития событий.

Увы, в будущее заглянуть и все точно увидеть не дано никому, и поэтому в процессе принятия корпоративных решений часто приходится представлять многообразие вариантов развития событий, которые подобно параллельным мирам в романах лучших фантастов существуют в воображении менеджеров различных уровней управления.

Роджер Желязны в своих романах назвал такие параллельные миры Отражениями. Его герои, люди особые, с легкостью умели перемещаться по таким мирам. Они таким образом фактически воплотили мечту современных менеджеров — как получить точную информацию о развитии событий и последствиях различных вариантов принятия решений. При этом герои фантаста двигались уже не вдоль (вниз и вверх по течению) реки времени, а поперек ее большого количества притоков и разливов.

Возможно, одно из таких Отражений и является миром, в котором автор этих строк стал математиком и пишет статьи в другой области человеческого познания, совсем в ином стилевом ракурсе — это не будет неизвестно никогда. Но сколько б не существовало человечество, и в корпоративных целях, и для удовлетворения личного интереса люди всегда будут делать воображаемые попытки приподнять завесу тайны над продвижением вдоль и поперек линии времени, ибо в этом состоит сущность отторжения индивидуумами риска.



Борьба со знаком хаоса

«И потом, не является тайной, что наши способности перемещаться по Отражениям, а также способности к колдовству, происходят из схожих корней.»

Роджер Желязны, «Знак хаоса»

Ни для кого не является тайной, что склонность индивидуумов к отторжению риска является достаточно распространенной чертой в современном мире. Людям свойственно отторгать тот уровень риска, который они неспособны воспринять исходя из особенностей собственной натуры.

Общеизвестной является одна из ключевых концепций финансового менеджмента о прямой взаимосвязи уровня риска и обещанных доходов. Людям кажется, что они выбирают (либо выбрали бы) тот уровень доходов, который они, на их взгляд, заслужили, но почему-то (конечно, незаслуженно) не получают. На самом деле каждый выбрал тот уровень риска, который способен психологически (а может, и генетически) вынести. Именно этим объясняется приверженность некоторых людей к гарантированной, но низкооплачиваемой государственной работе, в то время как другие становятся частными предпринимателями, акцептируя ответственность всем своим персональным имуществом.

Известно одно: при всей прямой взаимосвязи доходов и риска индивидуумы стараются максимизировать первое при одновременной минимизации второго, пытаясь таким образом разрешить неразрывное диалектическое противоречие.

Все вышеизложенное абсолютно справедливо не только для отдельных индивидуумов, но и для корпораций.

С практической точки зрения корпоративным управляющим следует:



  1. определить тот уровень риска, в рамках которого может функционировать данная компания;

  2. определить решения и поступки, которые выводят состояние компании за рамки допустимого риска;

  3. формировать собственную стратегию в рамках допустимого риска;

  4. принимать новые проекты, уровень риска которых таков, что при добавлении их в портфель проектов корпорации последнею будут достигаться максимально благоприятные финансовые результаты при соблюдении рамок допустимого риска.

Зададимся вопросом, что же представляет из себя риск, если ему уделяется столь важное значение в жизнедеятельности компании.

В соответствии с одним из определений риск — это фактор времени, связанный с неопределенностью будущего состояния объекта, вызванного изменениями внутренней и внешней среды его обитания.

Таким образом, риск в применении к компании либо к новым проектам является свойством неопределенности их будущего состояния. Увы, мы не герои Роджера Желязны, и нам не дано перемещаться в будущее во времени, чтобы это самое состояние точно установить. Тем более не можем мы и реально перемещаться перпендикулярно течению времени, дабы исследовать все нереализованные возможности. Будучи не в силах сделать это реально, но в попытках борьбы с неопределенностью и хаосом, финансовые менеджеры пробуют сделать такое моделирование на бумаге либо с помощью компьютера, пытаясь тем самым смоделировать и течение времени, и перенесение в параллельные миры.

Именно эти методы используются для анализа риска новых проектов (рис. 1).




Рис.1 Классификация методов анализа рика проектов

Среди таких методов выделяют анализ чувствительности проекта (sensitivity analysis), анализ сценариев развития проектов (scenery analysis), анализ безубыточности проектов (cost-volume-profit analysis), проведение имитационного моделирования (Monte Carlo simulation) и анализ его результатов, анализ альтернатив развития событий по проекту с помощью дерева решений (decision tree analysis). Ниже рассмотрим их более подробно.



Следуя логике кроличьей норы

«Где был Чеширский Кот, когда мне требовалась логика кроличьей норы?...»

Роджер Желязны, «Рыцарь Отражений»

Практика проведения консалтинга на отечественных предприятиях убедительно показывает, что только относительно небольшая часть из них делают анализ и последующее обоснование того, как управлять риском в процессе внедрения новых проектов. Большинство же предприятий, особенно небольших, предпочитают действовать, используя логику кроличьей норы.

Помните, Алиса в Стране чудес свалилась в кроличью норку и долго куда-то летела, предметы и события проносились мимо нее, а она ничего не делала, только пассивно наблюдала.

Определенная часть небольших предприятий внедряют новые проекты именно по такому сценарию: произвольно или по прихоти руководителей (совладельцев) входя в новые проекты и далее пассивно наблюдая развитие событий и очередной провал в очередную «кроличью нору».

В противовес такому подходу принято делать не только финансовое обоснование проекта и определять критерии его принятия, о чем уже рассказывалось в более ранней публикации «Особенности национальной оценки проектов» («&.СТРАТЕГИИ» за январь 2004 г.). В большинстве случаев обязательной процедурой является анализ риска, например, с помощью анализа чувствительности. Так, некоторые банки при рассмотрении кредитных дел проводят такой анализ, как обязательную составляющую обоснования целесообразности кредитования проекта.

Рассмотрим более детально сущность анализа чувствительности проектов, графическая модель которого представлена на схеме (рис. 2).





Рис. 2 Графическая модель проведения анализа чувствительности проекта

Напомним, что наиболее часто используемым критерием принятия решения относительно проекта является параметр чистой приведенной стоимости денежных потоков проекта — NPV.

Как упоминалось в более ранних публикациях, его расчет производится по приведенной ниже формуле (1).

Чистая приведенная стоимость фактически представляет собой расчет суммы приведенных к сегодняшнему эквиваленту суммы чистых денежных потоков проекта при ставке дисконтирования, равной прибыльности альтернативных проектов с аналогичным уровнем риска. Подсчет можно произвести по формуле:



(1)

где NCFt — величина чистого денежного потока проекта; k — норма дисконтирования; t — временная отдаленность денежного потока от изначальной точки.

Достаточно распространенной в практике функционирования отечественных предприятий является ситуация, когда, проведя обоснование проекта и рассчитав единственное значение NPV, принимают решение.

В противовес данному подходу анализ чувствительности (рис. 2) предусматривает проведение следующих процедур:



  1. Формируют модель обоснования проекта в виде набора бюджетов, используя MS Excel, Project Expert либо другое специализированное программное обеспечение.

  2. Рассматривают такую модель как черный ящик, систему, на вход которой подаются исходные данные проекта (например, цена продукта, объем предполагаемых продаж, процентная ставка дисконтирования, ставка по кредитам, предполагаемый уровень инфляции и т. д.), на выходе черного ящика «снимают» только один параметр. Чаще всего им служит значение NPV, которое генерирует проект с такими исходными данными.

  3. Несколько раз рассчитывают обоснование проекта, пользуясь сформированной моделью при различных значениях исходных данных. При этом набор исходных данных формируют следующим образом: все параметры исходных данных, кроме одного, оставляют постоянными без изменений, а один параметр считают переменным, генерируя сразу несколько его значений (обычно пять) с определенным шагом относительных изменений. Изменения, например, могут составлять –20%; –10%; 0%; +10%; +20%. Модель рассчитывают несколько раз при различных изменениях переменного параметра. Так, если в базовом варианте обоснования предполагалась цена продукта на уровне 50 грн. и именно цена является на данном этапе переменным параметром, то вычисляют, какие значения чистой приведенной стоимости давал бы проект в случае, если цена будет составлять соответственно 40 грн., 45 грн., 50 грн., 55 грн., 60 грн. То есть при приведенном выше относительном приросте переменного параметра по отношению к базовому варианту.

  4. Вычисляют относительные темпы прироста полученных значений чистой приведенной стоимости по отношению к NPV базового варианта: (NPV+20% : NPV0% – 1)100%; (NPV+10% : NPV0% – 1)100%; (NPV0% : NPV0% – 1)100%; (NPV–10% : NPV0% – 1)100%; (NPV–20% : NPV0% – 1)100%.

  5. Сопоставляют полученные значения удельного прироста NPV с удельным приростом переменного параметра.

  6. Процедуру, изложенную в пунктах 3–5, повторяют для других исходных параметров, приняв в качестве переменных каждый из них по отдельности и зафиксировав другие.

Результаты проведенного анализа часто принято представлять в виде графика, получившего название паукообразной диаграммы (spider diagram). Пример такого графика приведен на схеме (рис. 3).


Рис. 3 Представление результатов анализа чувствительности проекта: паукообразная диаграмма

Как видно из представленной диаграммы, построены линии реакции удельного изменения чистой приведенной стоимости при изменении переменной характеристики. Таким образом, каждый параметр имеет свою линию, которая показывает реакцию чистой приведенной стоимости NPV на изменение самого переменного параметра.

Очевидно, что всего предусмотреть невозможно, но именно те параметры, удельное изменение которых вызывает наибольшее удельное изменение чистой приведенной стоимости, предусмотреть можно. Именно они являются факторами наибольшего риска по проекту. На графике линии таких факторов проведены под углом наклона, который максимально приближен к горизонтальной пунктирной линии. Соответственно менеджеры в процессе внедрения проекта именно этим факторам должны уделять наибольшее внимание. Целесообразно также создать и реализовать план мероприятий по контролю данных факторов в процессе внедрения проекта.

В процессе практической реализации анализа чувствительности с целью минимизации усилий на его реализацию следует учесть ряд практических моментов, скорее, из области информационных технологий:



  1. при построении исходной модели проекта следует придерживаться принципа единого введения исходных данных;

  2. все параметры проекта должны рассматриваться как такие исходные данные;

  3. нужно всегда иметь резервную копию базовой модели в отдельном файле;

  4. необходимо оставлять подробную инструкцию и описание модели.

Одним из недостатков анализа чувствительности является предпосылка того, что каждый исходный параметр изменяется, независимо от других. Исправить подобную ситуацию помогает анализ сценариев, когда изменяется сразу группа взаимозависящих показателей. Например, следуя классическому закону спроса и предложения, мы можем установить взаимосвязь между параметрами цены и объема продаж. Количество и взаимосвязи исходных параметров модели могут представлять собой достаточно сложную систему. В этом случае имеет смысл отдельно рассматривать развитие событий, соответствующее оптимистическому, ожидаемому и пессимистическому варианту развития. Для каждого из вышеуказанных сценариев рассчитываются свои варианты чистой приведенной стоимости проекта, внутренней нормы рентабельности и других показателей.

Предугадывая развитие событий

«Развитие событий мне никак не нравилось. День начался плохо, а потом
все шло хуже и хуже. А время-то всего лишь обеденное.»


Роджер Желязны, «Хроники Амбера»

Еще более сложным вариантом анализа риска проекта является имитационное моделирование (рис. 4).





Рис. 4 Графическая модель проведения анализа на основе имитационного моделирования (метод Монте-Карло)

В этом случае мы не просто пробуем предугадать развитие событий, мы пробуем предугадать природу поведения самих исходных данных. Ни для кого не секрет, что большинство из них подчиняются закону нормального распределения Гаусса с присущей им асимметрией и эксцессом. Эти параметры используют в имитационном моделировании, алгоритм которого может быть представлен в виде изложенной ниже последовательности шагов:



  1. Как и в предыдущем случае, формируем модель обоснования проекта в виде набора бюджетов, используя Project Expert либо другое специализированное программное обеспечение.

  2. Аналогично соответствующему шагу в алгоритме анализа чувствительности при имитационном моделировании также рассматриваем такую модель как черный ящик, систему, на вход которой подаются исходные данные проекта (например, цена продукта, объем предполагаемых продаж, процентная ставка дисконтирования, ставка по кредитам, предполагаемый уровень инфляции и т. д.). На выходе черного ящика «снимаем» только один параметр. Чаще всего им служит значение NPV, которое генерирует проект с такими исходными данными.

  3. Выбираем переменный параметр и при необходимости фиксируем остальные, но в отличие от предыдущего метода расчеты половины модели ведем следующим образом. «Бомбардируем» модель случайными числами с законом распределения, характерным для поведения исходного переменного параметра при остальных зафиксированных значенях. Серии случайных чисел могут составлять последовательности, состоящие из нескольких тысяч и даже десятков тысяч значений, имитирующих изменение переменного параметра, в то время как при проведении анализа чувствительности такая серия состояла только из пяти значений.

  4. Обрабатываем полученные значения результирующего параметра (например значения чистой приведенной стоимости) для того, чтобы определить характеристики поведения результирующей величины. Определяем асимметрию и эксцесс результирующего параметра.

  5. Сопоставляем соответствующие законы поведения исходных параметров с законом поведения результирующей величины. Изменения в параметрах распределения результирующего параметра по отношению к параметрам поведения исходного фактора будут указывать на значимость, уровень риска и тенденцию к изменению результирующего параметра проекта.

  6. Делаем соответствующие выводы и составляем план управления факторами риска.

Следует отметить, что в целом данный метод является достаточно трудоемким, ведь он предусматривает циклическое повторенные одних и тех же вычислений по модели много тысяч раз в процессе подстановки в качестве исходных данных серии случайных чисел, из-за которых метод получил второе название метода Монте-Карло. В этом случае на помощь менеджерам приходит специализированное программное обеспечение, например Project Expert. Отметим также возможность реализации метода даже с помощью MS Excel, но тогда получение результатов будет спряжено с трудозатратами, делающими применение данного метода неэффективным.

Практика показывает, что использование симуляции Монте-Карло оправдано прежде всего для больших и дорогостоящих проектов.



Руководство по перемещению по Отражениям

Еще одним часто используемым на практике методом анализа риска в проектах является анализ безубыточности проекта. Правда, в случае анализа риска речь идет вовсе не о классическом варианте анализа соотношения затрат — объема производства и прибыли.

Общеизвестно, что фактором, которому на практике, следует уделять наибольшее внимание, являются продажи компании, либо в случае коммерческого проекта — продажи продукта, выпуск которого будет осуществляться в результате реализации проекта.

В процессе анализа безубыточности при анализе риска проектов предполагают, что единственным интегральным фактором, который аккумулирует весь риск проекта, являются продажи. В этом случае точку безубыточности рассчитывают исходя из уравнения NPV = 0.

Иными словами, точка безубыточности проекта находится при том уровне продаж, теперешняя приведенная стоимость денежных потоков от которых равна приведенной теперешней стоимости денежных оттоков, вызванных инвестициями и элементами денежных затрат проекта. Следовательно, необходимо подобрать такую последовательность продаж, приведенное значение денежных потоков от которых сравнится с приведенной денежной стоимостью оттоков. Величина таких продаж и будет представлять собой тот критический минимум, ниже которого чистая приведенная стоимость проекта становится отрицательной.

Умозаключения

«— Значит, дьявол зовется Умозаключением, — произнесла она с ноткой восхищения в голосе. — Однако ты вызываешь его с помощью интуиции, а это искусство.
— Приятно знать, что он по-прежнему является на зов.»


Роджер Желязны, «Хроники Амбера»

Следующий нижеизложенный метод анализа риска проектов, возможно, один из наиболее распространенных на практике. Речь идет о дереве решений и его применении для анализа риска проектов и принятия решений по выбору альтернатив.

Практика построения такого дерева предполагает работу фокус-группы в режиме брейн-сторма с целью построения ряда умозаключений, положенных в основу дерева решений. Для технического изображения такого дерева можно использовать аппликацию MS Excel Palisade Precision Tree в обычной, профессиональной либо индустриальной версии. Пример такого дерева и необходимые расчеты приведены на схеме (рис. 5).


Рис. 5 Пример дерева решений компании Any Corporation, Inc. в процессе обоснования выбора продукта для производства

Правда, с целью наглядности дерево построено автором без использования пакета Palisade Precision Tree, в «ручном» режиме.

Итак, приведем необходимые пояснения к данной схеме.

Дерево решений — это совокупность табличек, каждая из которых имеет единственный вход и несколько (иногда больше двух) выходов, обозначенных на схеме разветвляющимися стрелками. В дальнейшем будем называть такие таблички узлами, а стрелки — ветками дерева решений. В площади каждого узла находятся исходные данные (исходные данные находятся в клетках желтого цвета) и результаты промежуточных и окончательных вычислений (результаты промежуточных и окончательных вычислений представлены в клетках с зеленым фоном). Кроме того, в площади каждого узла на синем фоне находится название этапа и его номер (код), под узлом находятся дополнительные пояснения. Номер этапа на дереве находится в промежутке от 1 до 1.2.2.2.2. В площади узла также находится геометрическая фигура: красный круг, зеленый квадрат либо розовый эллипс. Последний означает завершение дальнейшего развития событий — ситуацию, когда умозаключения относительно дальнейшего развития событий не создавались.

Красный круг в узле означает, что развитие дальнейших событий возможно по сценариям, указанным исходящими из данного узла стрелками, но выбор сценария развития зависит не от нас, а от совокупности случайных факторов внешней и внутренней среды, в дальнейшем именуемых нами состояниями природы. Например, в узле 1.1 «Выпуск продукта А» при выборе проекта по выпуску именно этого продукта развитие событий может происходить по двум сценариям: «Оптимистическому варианту» (узел 1.1.1) и «Пессимистическому варианту» (узел 1.1.2). Вероятность развития событий по данным сценариям указана в поле этих узлов. Так, вероятность оптимистического развития событий (узел 1.1.1) в начале выпуска продукта А составляет 0,55 или 55 шансов из 100, в то время как вероятность пессимистического развития (узел 1.1.2) оценивается как 0,45. Важно, чтобы были предусмотрены все возможные варианты развития событий, а это значит, что сумма вероятностей в соответственных одноуровневых узлах должна составлять единицу. В нашем случае так и есть: 0,55 + 0,45 = 1,00.

Зеленый квадрат в поле узла означает, что развитие событий зависит не от состояния природы, а от принятия решения менеджерами компании. Например, при развитии событий по пессимистическому варианту (узел 1.1.1.2), при котором, как видно из пояснений, продажи падают, менеджерами принимается решение о возможных инвестициях в бренд. В случае принятия положительного решения это потребует дополнительных капиталовложений, скажем, в размере –1500 ден. ед., если при развитии событий по пессимистическому варианту (узел 1.1.1.2) положительный денежный поток составлял 3200 ден. ед., то чистый денежный поток будет составлять 1700 ден. ед. = 3200 ден. ед. – 500 ден. ед. Именно это число (чистый денежный поток) следует указывать в поле «денежный поток» узла. Возможна ситуация, когда положительный денежный поток полностью реинвестируется, и тогда чистый денежный поток составит 0.

При расчете оптимального варианта развития событий, а также в процессе принятия решений на этапе каждого узла рассчитывают промежуточное значение математического ожидания и промежуточную чистую приведенную стоимость. В данном случае математическое ожидание является усредненной ожидаемой величиной промежуточного значения чистой приведенной стоимости. Это ожидаемая величина в развитии событий.

Так, математическое ожидание в узле 1.1.1 составляет 11600,22 ден. ед., что составляет сумму произведений вероятностей на промежуточное значение NPV, по каждому варианту развития событий. В нашем случае 11600,22 = 0,65 × 15672,06 + 0,35 × 4038,24. Таким образом, для расчета такого математического ожидания берутся данные из сопредельных узлов (1.1.1.1 и 1.1.1.3), которые отображают последующие варианты развития событий.

На основе математического ожидания и чистых денежных потоков рассчитываются показатели промежуточных значений чистой приведенной стоимости. В качестве ставки дисконтирования для приведенного выше примера выбрана величина 36%. В поле ранних публикациях показан принцип выбора ставки дисконтирования.

Фактически промежуточное значение чистой приведенной стоимости представляет собой сумму приведенных чистых денежных потоков в данном узле и приведенную стоимость математического ожидания чистой приведенной стоимости будущих приведенных денежных потоков.

Например, чистая приведенная стоимость в узле 1.1.1.1 составляет:

15672,06 = 4650.00 : (1 + 0.36)0 + 14990.00 : (1 + 0.36)1.

Таким образом, используя приведенные выше примеры вычислений, можно рассчитать по цепочке все значения дерева, начиная с самых правых ответвлений.

Например, для узлов:

1.2.1.1.1:


  • математическое ожидание будущего денежного потока 0;

  • чистая приведенная стоимость денежного потока: 19800,00 : (1 + 0,36)0 = 19800,00;

1.2.1.1.2:

  • математическое ожидание будущего денежного потока 0;

  • чистая приведенная стоимость денежного потока: 8800,00 : (1 + 0,36)0 = 8800,00;

1.2.1.1:

  • математическое ожидание будущего денежного потока: 19800,00 × 0,9 + 8800,00 × 0,1 = 18700,00;

  • чистая приведенная стоимость денежного потока: 11400,00 : (1 + 0,36)0 + 18700,00 : (1 + 0,36)1 = 25150,00;

1.2.1:

  • математическое ожидание будущего денежного потока: 25150,00 × 0,75 + 7601,29 × 0,25 = 20762,82;

  • чистая приведенная стоимость денежного потока: –100,00 : (1 + 0,36)0 + 20762,82 : (1 + 0,36)1 = 15166,78;

1.2:

  • математическое ожидание будущего денежного потока: 15166,00 × 0,65 + 1565,87 × 0,35 = 10406,46;

  • чистая приведенная стоимость денежного потока: –7300,00 : (1 + 0,36)0 + 10406,46 : (1 + 0,36)1 = 351,81.

Аналогичным образом можно произвести вычисления по первому ответвлению.

Данное дерево решений позволяет выбрать продукт, который следует производить, а следовательно, сделать выбор между двумя проектами А и В по выпуску соответствующих продуктов.

Произведенные расчеты показывают, что при отсутствии других стратегических факторов влияния, неучтенных в данном дереве, и при прочих равных условиях более выгодно предпринять проект по выпуску продукта В. Так как его чистая приведенная стоимость (узел 1.2) составляет 351,81 ден. ед., в то время как для продукта А чистая приведенная стоимость проекта отрицательна и составляет всего –2746,78 ден. ед. (узел 1.1).

Следуя путем выбора большего NPV, можно определить наиболее благоприятный вариант развития событий. Выбирая по ответвлениям большее значение показателя NPV, можем определить, что наиболее благоприятное развитие событий изложено в следующей последовательности узлов:

1.2 — 1.2.1 — 1.2.1.1 — 1.2.1.1.1.

Таким образом, для осуществления анализа риска с использованием дерева решений следует выполнить следующую последовательность:



  1. Построить конфигурацию дерева решений, постаравшись предусмотреть все варианты развития состояний природы (красные кружки) и все варианты выбора решения самим объектом (зеленые квадратики).

  2. Выяснить (на основе экспертных методов либо путем обработки исторических данных) вероятность развития различных состояний. Следует следить, чтобы сумма вероятностей взаимоисключающих событий составляла 1.

  3. Для каждого отдельного узла составить бюджет положительных и отрицательных денежных потоков и вычислить чистый денежный поток. При этом учитывать стоимость принятия решения и необходимые инвестиции для его реализации.

  4. Произвести расчеты математического ожидания будущих чистых денежных потоков и их чистой приведенной стоимости в каждом узле.

  5. Принять решение относительно выбора проектов и наиболее оптимального развития событий, а также принятия будущих решений.

  6. Построить план управления будущим развитием событий в той части, в которой мы сами принимаем решения, и довести его до будущих исполнителей — реализаторов проекта.

  7. В случае развития событий по неблагоприятному сценарию следующий узел должен представлять заложенное нами решение, призванное исправить ситуацию.

  8. Не надеяться на благоприятное развитие состояния природы, а надеятся на собственные силы и командные усилия.

Выбирая между способностью к выявлению лжи и открытию истины

«Интересно, что вы предпочли бы, если бы пришлось выбирать
между способностью к выявлению лжи и открытию истины?»


Роджер Желязны, «Хроники Амбера»

Итак, фактически построив дерево решений и сделав анализ риска проектов, мы тем самым, не надеясь на волю фантаста, создали сами параллельные миры развития событий по проекту. Более того, использовав умозаключения группы, мы научились передвигаться по веткам этих параллельных миров и отслеживать изменения.

В наших силах теперь предугадать и истинное, и ложное развитие событий в будущем, вопрос только в том, какое из них действительно произойдет.

Будущее не так уж неопределенно, если подобно Рыцарям Отражений уметь хотя бы умозрительно перемещаться между параллельными мирами Дерева Решений. Дата публикации: 06.08.2007



http://www.cfin.ru/finanalysis/invest/project_risk_assessment.shtml
ч. 1